Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Parasitol Res ; 123(4): 179, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38584235

RESUMO

Giardia duodenalis, the protozoan responsible for giardiasis, is a significant contributor to millions of diarrheal diseases worldwide. Despite the availability of treatments for this parasitic infection, therapeutic failures are alarmingly frequent. Thus, there is a clear need to identify new therapeutic targets. Giardia telomeres were previously identified, but our understanding of these structures and the critical role played by Giardia telomerase in maintaining genomic stability and its influence on cellular processes remains limited. In this regard, it is known that all Giardia chromosomes are capped by small telomeres, organized and protected by specific proteins that regulate their functions. To counteract natural telomere shortening and maintain high proliferation, Giardia exhibits constant telomerase activity and employs additional mechanisms, such as the formation of G-quadruplex structures and the involvement of transposable elements linked to telomeric repeats. Thus, this study aims to address the existing knowledge gap by compiling the available information (until 2023) about Giardia telomeres and telomerase, focusing on highlighting the distinctive features within this parasite. Furthermore, the potential feasibility of targeting Giardia telomeres and/or telomerase as an innovative therapeutic strategy is discussed.


Assuntos
Giardia lamblia , Giardíase , Telomerase , Humanos , Telomerase/genética , Telomerase/metabolismo , Giardíase/parasitologia , Giardia/genética , Telômero/genética , Giardia lamblia/genética , Giardia lamblia/metabolismo
2.
Sci Total Environ ; 928: 170999, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38458461

RESUMO

Substances that can absorb sunlight and harmful UV radiation such as organic UV filters are widely used in cosmetics and other personal care products. Since humans use a wide variety of chemicals for multiple purposes it is common for UV filters to co-occur with other substances either in human originating specimens or in the environment. There is increasing interest in understanding such co-occurrence in form of potential synergy, antagonist, or additive effects of biological systems. This review focuses on the collection of data about the simultaneous occurrence of UV filters oxybenzone (OXYB), ethylexyl-methoxycinnamate (EMC) and 4-methylbenzylidene camphor (4-MBC) as well as other classes of chemicals (such as pesticides, bisphenols, and parabens) to understand better any such interactions considering synergy, additive effect and antagonism. Our analysis identified >20 different confirmed synergies in 11 papers involving 16 compounds. We also highlight pathways (such as transcriptional activation of estrogen receptor, promotion of estradiol synthesis, hypothalamic-pituitary-gonadal (HPG) axis, and upregulation of thyroid-hormone synthesis) and proteins (such as Membrane Associated Progesterone Receptor (MAPR), cytochrome P450, and heat shock protein 70 (Hsp70)) that can act as important key nodes for such potential interactions. This article aims to provide insight into the molecular mechanisms on how commonly used UV filters act and may interact with other chemicals.

3.
Exp Hematol ; 132: 104172, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38309572

RESUMO

Chromotrypsis, a phenomenon resulting from catastrophic mitotic errors and genomic instability, is defined by the occurrence of multiple DNA double-strand breaks in one or more chromosomes, subsequently subject to error-prone repair mechanisms. This unique process results in extensive rearrangements in the affected chromosomes, leading to loss of tumor suppressor function, the creation of fusion genes, and/or activation of oncogenes. The importance of chromothripsis in cancer, especially in the field of hematologic disorders, underscores the intricate interplay between genomic instability and the genesis of alterations that contribute to cancer. This accentuates the critical need to unravel these complex processes for the targeted development of specific therapeutic interventions. This review delves into the analysis of chromothripsis cases in various hematologic diseases, such as leukemia, lymphoma, and myeloma, with the aim of unveiling its profound impact on patient prognosis. Furthermore, the study explores the intricate molecular mechanisms underlying chromothripsis and investigates its consequences.


Assuntos
Cromotripsia , Neoplasias Hematológicas , Neoplasias , Humanos , Instabilidade Genômica , Quebras de DNA de Cadeia Dupla , Neoplasias/genética , Neoplasias Hematológicas/genética
4.
J Biomol Struct Dyn ; 42(2): 1088-1097, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37011009

RESUMO

Resveratrol is a natural compound with a wide range of biological functions that generate health benefits under normal conditions and in multiple diseases. This has attracted the attention of the scientific community, which has revealed that this compound exerts these effects through its action on different proteins. Despite the great efforts made, due to the challenges involved, not all the proteins with which resveratrol interacts have yet been identified. In this work, using protein target prediction bioinformatics systems, RNA sequencing analysis and protein-protein interaction networks, 16 proteins were identified as potential targets of resveratrol. Due to its biological relevance, the interaction of resveratrol with the predicted target CDK5 was further investigated. A docking analysis found that resveratrol can interact with CDK5 and be positioned in its ATP-binding pocket. Resveratrol forms hydrogen bonds between its three hydroxyl groups (-OH) and CDK5 residues C83, D86, K89 and D144. Molecular dynamics analysis showed that these bonds allow resveratrol to remain in the pocket and suggest inhibition of CDK5 activity. All this allows us to better understand how resveratrol acts and to consider CDK5 inhibition within its biological actions, mainly in neurodegenerative diseases where this protein has been shown to be relevant.Communicated by Ramaswamy H. Sarma.


Assuntos
Simulação de Dinâmica Molecular , Resveratrol/farmacologia , Resveratrol/química , Simulação de Acoplamento Molecular
5.
Mol Cell Biochem ; 2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-38064138

RESUMO

Sirtuin 7 (SIRT7) is a member of the sirtuin family and has emerged as a key player in numerous cellular processes. It exhibits various enzymatic activities and is predominantly localized in the nucleolus, playing a role in ribosomal RNA expression, DNA damage repair, stress response and chromatin compaction. Recent studies have revealed its involvement in diseases such as cancer, cardiovascular and bone diseases, and obesity. In cancer, SIRT7 has been found to be overexpressed in multiple types of cancer, including breast cancer, clear cell renal cell carcinoma, lung adenocarcinoma, prostate adenocarcinoma, hepatocellular carcinoma, and gastric cancer, among others. In general, cancer cells exploit SIRT7 to enhance cell growth and metabolism through ribosome biogenesis, adapt to stress conditions and exert epigenetic control over cancer-related genes. The aim of this review is to provide an in-depth understanding of the role of SIRT7 in cancer carcinogenesis, evolution and progression by elucidating the underlying molecular mechanisms. Emphasis is placed on unveiling the intricate molecular pathways through which SIRT7 exerts its effects on cancer cells. In addition, this review discusses the feasibility and challenges associated with the development of drugs that can modulate SIRT7 activity.

6.
Biochimie ; 220: 58-66, 2023 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-38158036

RESUMO

Naked mole rats (NMRs) are renowned for their exceptional longevity and remarkable maintenance of health throughout their lifetime. Their subterranean lifestyle has led to adaptations that have resulted in elevated levels of a very high molecular weight hyaluronan in their tissues. Hyaluronan, a glycosaminoglycan, is a key component of the extracellular matrix, which plays a critical role in maintaining tissue structure and regulating cell signaling pathways. This phenomenon in NMRs is attributed to a higher processing and production capacity by some of their hyaluronan synthases, along with lower degradation by certain hyaluronidases. Furthermore, this adaptation indirectly confers several advantages to NMRs, such as the preservation of skin elasticity and youthful appearance, accelerated wound healing, protection against oxidative stress, and resistance to conditions such as cancer and arthritis, largely attributable to CD44 signaling and other intricate mechanisms. Thus, the main objective of this study was to conduct a comprehensive study of the distinctive features of NMR hyaluronan, particularly emphasizing the currently known molecular mechanisms that contribute to its beneficial properties. Furthermore, this research delves into the potential applications of NMR hyaluronan in both cosmetic and therapeutic fields, as well as the challenges involved.

7.
Biomedicines ; 11(11)2023 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-38002032

RESUMO

Dipeptidyl peptidase 4 (DPP4) inhibitors, commonly known as gliptins, have been an integral part of the treatment of type 2 diabetes mellitus (T2DM) for several years. Despite their remarkable efficacy in lowering glucose levels and their compatibility with other hypoglycemic drugs, recent studies have revealed adverse effects, prompting the search for improved drugs within this category, which has required the use of animal models to verify the hypoglycemic effects of these compounds. Currently, in many countries the use of mammals is being significantly restricted, as well as cost prohibitive, and alternative in vivo approaches have been encouraged. In this sense, Drosophila has emerged as a promising alternative for several compelling reasons: it is cost-effective, offers high experimental throughput, is genetically manipulable, and allows the assessment of multigenerational effects, among other advantages. In this study, we present evidence that diprotin A, a DPP4 inhibitor, effectively reduces glucose levels in Drosophila hemolymph. This discovery underscores the potential of Drosophila as an initial screening tool for novel compounds directed against DPP4 enzymatic activity.

8.
Med Sci (Basel) ; 11(4)2023 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-37987327

RESUMO

Although liposarcoma is the most prevalent soft tissue sarcoma in adults, head and neck liposarcomas are rare and account for less than 5% of all liposarcomas. The primary orbital location is even more exceptional, with fewer than 100 cases documented in the medical literature. Given the scarcity of cases of orbital liposarcoma and the limited familiarity of physicians and pathologists with this pathology, there is an increased risk of non-diagnosis or misdiagnosis, which may lead to inappropriate patient management. To address these challenges, we present a case of primary orbital myxoid liposarcoma and subsequently discuss the primary findings of this case based on the evidence documented in the medical literature. This comprehensive text is designed to serve as a valuable resource for healthcare professionals and pathologists, with the goal of promoting both clinical suspicion and accurate diagnosis and treatment of this rare condition in future cases.


Assuntos
Lipossarcoma Mixoide , Neoplasias de Tecidos Moles , Adulto , Humanos , Lipossarcoma Mixoide/diagnóstico , Lipossarcoma Mixoide/cirurgia , Lipossarcoma Mixoide/patologia , Neoplasias de Tecidos Moles/diagnóstico , Neoplasias de Tecidos Moles/patologia , Pescoço/patologia
9.
Parasitol Res ; 122(9): 1961-1971, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37400534

RESUMO

Giardia duodenalis is a protozoan intestinal parasite that causes a significant number of infections worldwide each year, particularly in low-income and developing countries. Despite the availability of treatments for this parasitic infection, treatment failures are alarmingly common. As a result, new therapeutic strategies are urgently needed to effectively combat this disease. On the other hand, within the eukaryotic nucleus, the nucleolus stands out as the most prominent structure. It plays a crucial role in coordinating ribosome biogenesis and is involved in vital processes such as maintaining genome stability, regulating cell cycle progression, controlling cell senescence, and responding to stress. Given its significance, the nucleolus presents itself as a valuable target for selectively inducing cell death in undesirable cells, making it a potential avenue for anti-Giardia treatments. Despite its potential importance, the Giardia nucleolus remains poorly studied and often overlooked. In light of this, the objective of this study is to provide a detailed molecular description of the structure and function of the Giardia nucleolus, with a primary focus on its involvement in ribosomal biogenesis. Likewise, it discusses the targeting of the Giardia nucleolus as a therapeutic strategy, its feasibility, and the challenges involved.


Assuntos
Nucléolo Celular , Giardia , Ribossomos , Nucléolo Celular/genética , Nucléolo Celular/metabolismo , Giardia/citologia , Giardia/genética , RNA Ribossômico/genética , DNA Ribossômico/genética , DNA de Protozoário/genética , RNA de Protozoário/genética , Transcrição Gênica , Regulação da Expressão Gênica , Processamento Pós-Transcricional do RNA/genética , Ribossomos/genética , Ribossomos/metabolismo , Giardíase/tratamento farmacológico , Antiparasitários/uso terapêutico , Desenvolvimento de Medicamentos/tendências
10.
Front Endocrinol (Lausanne) ; 14: 1171886, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37293502

RESUMO

Introduction: The purpose of this retrospective clinic chart review study was to determine the potential of a combination therapy (CT) consisting of γ-aminobutyric acid (GABA), a dipeptidyl peptidase-4 inhibitor (DPP-4i), and a proton pump inhibitor (PPI) to improve glycemic control as an adjunct to insulin therapy in patients with type 1 diabetes (T1D). Research design and methods: Nineteen patients with T1D on insulin therapy were treated with additional CT in oral form. Fasting blood glucose (FBG), HbA1c, insulin dose-adjusted HbA1c (IDA-A1c), daily insulin dose, insulin/weight ratio (IWR), and fasting plasma C-peptide were measured after 26-42 weeks of treatments. Results: FBG, HbA1c, IDA-A1c, insulin dose and IWR were all significantly decreased while plasma C-peptide was significantly increased by the CT. Treatment outcomes were further analyzed by separation of the 19 patients into two groups. One group started on the CT within 12 months of insulin treatment (early therapy, 10 patients) and another group started on this therapy only after 12 months of insulin treatment (late therapy, 9 patients). FBG, IDA-A1c, insulin dose, and IWR decreased significantly in both the early and late CT groups, however to a better extent in the early therapy group. Moreover, plasma C-peptide increased significantly only in the early therapy group, and 7 of the 10 patients in this group were able to discontinue insulin treatment while maintaining good glycemic control to study end compared with none of the 9 patients in the late therapy group. Conclusion: These results support the concept that the combination of GABA, a DPP-4i and a PPI as an adjunct to insulin therapy improves glycemic control in patients with T1D, and that the insulin dose required for glycemic control can be reduced or even eliminated in some patients receiving this novel therapy.


Assuntos
Diabetes Mellitus Tipo 1 , Diabetes Mellitus Tipo 2 , Inibidores da Dipeptidil Peptidase IV , Humanos , Inibidores da Dipeptidil Peptidase IV/uso terapêutico , Insulina/uso terapêutico , Diabetes Mellitus Tipo 1/tratamento farmacológico , Diabetes Mellitus Tipo 1/induzido quimicamente , Hemoglobinas Glicadas , Inibidores da Bomba de Prótons/uso terapêutico , Estudos Retrospectivos , Peptídeo C , Diabetes Mellitus Tipo 2/tratamento farmacológico , Glicemia , Hipoglicemiantes/uso terapêutico , Ácido gama-Aminobutírico/uso terapêutico
11.
Biochimie ; 209: 131-141, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36813074

RESUMO

Cancer is one of the main diseases currently afflicting mankind, being difficult to treat and generating thousands of deaths per year. As a result, researchers around the world are constantly searching for new therapeutic strategies to increase the survival rate of patients. In this regard, SIRT5 may be a promising therapeutic target due to its involvement in many metabolic pathways. Notably, SIRT5 has a dual role in the context of cancer, being able to act as a tumor suppressor in some types of cancer and behaving as an oncogene in others. Interestingly, the performance of SIRT5 is not specific and is highly dependent on the cellular context. As a tumor suppressor, SIRT5 prevents the Warburg effect, increases protection against ROS and reduces cell proliferation and metastasis, while as an oncogene it has the opposite effects as well as increasing resistance to chemotherapeutics and/or radiation. In this way, the aim of this work was to identify in which cancers SIRT5 has beneficial effects and in which deleterious ones based on their molecular characteristics. Furthermore, it was analyzed whether it is feasible to use this protein as a therapeutic target, either enhancing its activity or inhibiting it as appropriate.


Assuntos
Neoplasias , Sirtuínas , Humanos , Mitocôndrias/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Sirtuínas/metabolismo
12.
Arch Insect Biochem Physiol ; 113(2): e22001, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36653964

RESUMO

The above article, published online on 18 January 2023 in Wiley Online Library (https://onlinelibrary.wiley.com/doi/abs/10.1002/arch.22001), has been retracted by agreement between the author, the journal Editor in Chief, Yonggyun Kim and Wiley Periodicals, LLC. The retraction has been agreed due to errors identified in the research methodology. The author confirms that repeating the research with corrected methodology has yielded significantly different results; therefore, the results and conclusions of the published article must be considered invalid.

13.
Hematol Oncol ; 41(1): 26-38, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36131612

RESUMO

Acute myeloid leukemia is a group of hematological diseases that have a high mortality rate. During the development of this pathology, hematopoietic cells acquire chromosomal rearrangements and multiple genetic mutations, including FLT3-ITD. FLT3-ITD is a marker associated with a poor clinical prognosis and involves the activation of pathways such as PI3K/AKT, MAPK/ERK, and JAK/STAT that favor the survival and proliferation of leukemic cells. In addition, FLT3-ITD leads to overproduction of reactive oxygen species and defective DNA damage repair, both implicated in the appearance of new mutations and leukemic clones. Thus, the purpose of this review is to illustrate the molecular mechanisms through which FLT3-ITD generates genetic instability and how it facilitates clonal evolution with the generation of more resistant and aggressive cells. Likewise, this article discusses the feasibility of combined therapies with FLT3 inhibitors and inhibitors of DNA repair pathways.


Assuntos
Leucemia Mieloide Aguda , Fosfatidilinositol 3-Quinases , Humanos , Fosfatidilinositol 3-Quinases/genética , Leucemia Mieloide Aguda/patologia , Dano ao DNA , Mutação , Progressão da Doença , Evolução Clonal , Tirosina Quinase 3 Semelhante a fms/genética
14.
J Biomol Struct Dyn ; 41(16): 8081-8091, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36148822

RESUMO

Sirtuins are highly conserved proteins that perform very important functions in different cellular processes. Notably, SIRT7 is the least studied human sirtuin, but it is known to be involved in a wide variety of processes in both health and disease. In this way, SIRT7 activity-regulating molecules could be beneficial for the treatment of relevant diseases such as cardiovascular and bone diseases, where SIRT7 levels are reduced, or obesity and cancer, where they are increased. In this work, using bioinformatic methods, the sequence and structure of SIRT7 orthologs in a wide variety of organisms were analyzed. Thus, the catalytic domain was found to be quite conserved (83.23% identity) and key residues such as D118, Y119, R120, D170, H187, N189, C198, C225, C228, V273, G298, F239 and V237 were identified. Furthermore, a phylogenetic tree was constructed where SIRT7 orthologs from mammals, birds, reptiles, amphibians, fish, insects, and arachnids were found to cluster in different groups. Finally, predicted three-dimensional structures showed a classic structure of the central catalytic region of most sirtuins, while the flanking N- and C-terminal regions were unique to each phylogenetic group. All this helps to understand a little more how SIRT7 works and gives clues for the future design and development of small molecules that benefit human and animal health.Communicated by Ramaswamy H. Sarma.

15.
J Appl Toxicol ; 43(3): 458-469, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36181250

RESUMO

Every day, we are exposed to many environmental pollutants that can enter our body through different routes and cause adverse effects on our health. Epidemiological studies suggest that these pollutants are responsible for approximately nine million deaths per year. Acute lymphoblastic leukemia (ALL) represents one of the major cancers affecting children, and although substantial progress has been made in its treatment, relapses are frequent after initial treatment and are now one of the leading causes of cancer-related death in pediatric patients. Currently, relatively little attention is paid to pollutant exposure during drug treatment and this is not taken into account for dose setting or regulatory purposes. In this work, we investigated how bisphenol A (BPA), its derivative bisphenol A diglycidyl ether (BADGE), and perfluorooctanoic acid (PFOA) alter vincristine treatment in ALL when administered before or together with the drug. We found that these three pollutants at nanomolar concentrations, lower than those established by current regulations, can reduce the cytotoxic effects of vincristine on ALL cells. Interestingly, we found that this is only achieved when exposure to pollutants occurs prior to administration of the chemotherapeutic drug. Moreover, we found that this effect could be mediated by activation of the PI3K/AKT pathway and stabilization of microtubules. This work strengthens the idea of starting to take into account exposure to pollutants to improve the efficacy of chemotherapy treatments.


Assuntos
Antineoplásicos , Poluentes Ambientais , Leucemia-Linfoma Linfoblástico de Células Precursoras , Vincristina , Criança , Humanos , Antineoplásicos/química , Antineoplásicos/toxicidade , Compostos Benzidrílicos/toxicidade , Compostos Benzidrílicos/análise , Poluentes Ambientais/química , Poluentes Ambientais/toxicidade , Compostos de Epóxi/toxicidade , Fosfatidilinositol 3-Quinases , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Vincristina/química , Vincristina/toxicidade
16.
Front Endocrinol (Lausanne) ; 13: 1028114, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36339443

RESUMO

Previous studies have reported that dual drug combinations consisting of γ-aminobutyric acid (GABA) together with a dipeptidyl-peptidase-4 inhibitor (DPP-4i), also a DPP-4i with a proton pump inhibitor (PPI), could improve pancreatic ß-cell function and ameliorate diabetes in diabetic mice. In this study, we sought to determine if a triple drug combination of GABA, a DPP-4i and a PPI might have superior therapeutic effects compared with double drug therapies in the prevention and reversal of diabetes in the non-obese diabetic (NOD) mouse model of human type 1 diabetes (T1D). In a diabetes prevention arm of the study, the triple drug combination of GABA, a DPP-4i, and a PPI exhibited superior therapeutic effects in preventing the onset of diabetes compared with all the double drug combinations and placebo. Also, the triple drug combination significantly increased circulating C-peptide and serum insulin levels in the mice. In a diabetes reversal arm of the study, the triple drug combination was superior to all of the double drug combinations in reducing hyperglycemia in the mice. In addition, the triple drug combination was the most effective in increasing circulating levels of C-peptide and serum insulin, thereby significantly reducing exogenous insulin needs. The combination of GABA, a DPP-4i and a PPI appears to be a promising and easily scalable therapy for the treatment and prevention of T1D.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 1 , Inibidores da Dipeptidil Peptidase IV , Animais , Camundongos , Peptídeo C , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Tipo 1/tratamento farmacológico , Ácido gama-Aminobutírico/uso terapêutico , Hipoglicemiantes/uso terapêutico , Camundongos Endogâmicos NOD , Omeprazol/uso terapêutico , Inibidores da Bomba de Prótons/uso terapêutico , Fosfato de Sitagliptina/uso terapêutico
17.
Diseases ; 10(3)2022 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-35997358

RESUMO

Coronavirus disease 2019 (COVID-19) is a disease caused by infection with the SARS-CoV-2 virus and has represented one of the greatest challenges humanity has faced in recent years. The virus can infect a large number of organs, including the lungs and upper respiratory tract, brain, liver, kidneys, and intestines, among many others. Although the greatest damage occurs in the lungs, the kidneys are not exempt, and acute kidney injury (AKI) can occur in patients with COVID-19. Indeed, AKI is one of the most frequent and serious organic complications of COVID-19. The incidence of COVID-19 AKI varies widely, and the exact mechanisms of how the virus damages the kidney are still unknown. For this reason, the purpose of this review was to assess current findings on the pathogenesis, clinical features, therapy, and mortality of COVID-19 AKI.

18.
Plasmid ; 122: 102641, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35952970

RESUMO

Giardia duodenalis, is a binuclear and microaerophilic protozoan that causes giardiasis. Up to date, several molecular approaches have been taken to understand the molecular mechanisms of diverse cellular processes in this parasitic protozoan. However, the role of many genes involved in these processes needs further analysis. The CRISPR interference (CRISPRi) system has been widely used, as a constitutive expression system for gene silencing purposes in several parasites, including Giardia. The aim of this work was to implement a tunable t-CRISPRi system in Giardia to silence abundant, moderately and low expressed genes, by constructing an optimized and inducible plasmid for the expression of both gRNA and dCas9. A doxycycline inducible pRan promoter was used to express dCas9 and each gRNA, consistently dCas9 expression and nuclear localization were confirmed by Western-blot and immunofluorescence in transfected trophozoites. The transcriptional repression was performed on α-tubulin (high expression), giardipain-1 (moderate expression) and Sir2 and Sir4 (low expression) genes. The α-tubulin gene knock-down caused by dCas9 doxycycline-induction was confirmed by a decrease in its protein expression which was of 50% and 60% at 24 and 48 h, respectively. This induced morphological alterations in flagella. The giardipain-1 knock down, showed a decrease in protein expression of 40 and 50% at 12 and 24 h, respectively, without affecting trophozoites viability, consistent with this a zymogram analysis on giardipain-1 knock down revealed a decrease in giardipain-1 protease activity. When repressing sirtuins expression, a total repression was obtained but trophozoites viability was compromised. This approach provides a molecular tool for a tailored repression to produce specific gene knockdowns.


Assuntos
Giardia lamblia , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Doxiciclina , Giardia lamblia/genética , Giardia lamblia/metabolismo , Plasmídeos , RNA Guia de Cinetoplastídeos/metabolismo , Tubulina (Proteína)
19.
Acta Parasitol ; 67(4): 1788-1799, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36028726

RESUMO

PURPOSE: Ribosome biogenesis is a key process in all living organisms, energetically expensive and tightly regulated. Currently, little is known about the components of the ribosomal RNA (rRNA) transcription machinery that are present in intestinal parasites, such as Giardia duodenalis, Cryptosporidium parvum, and Entamoeba histolytica. Thus, in the present work, an analysis was carried out looking for the components of the rRNA transcription machinery that are conserved in intestinal parasites and if these could be used to design new treatment strategies. METHODS: The different components of the rRNA transcription machinery were searched in the studied parasites with the NCBI BLAST tool in the EuPathDB Bioinformatics Resource Center database. The sequences of the RRN3 and POLR1F orthologs were aligned and important regions identified. Subsequently, three-dimensional models were built with different bioinformatic tools and a structural analysis was performed. RESULTS: Among the protozoa examined, C. parvum is the parasite with the fewest identifiable components of the rRNA transcription machinery. TBP, RRN3, POLR1A, POLR1B, POLR1C, POLR1D, POLR1F, POLR1H, POLR2E, POLR2F and POLR2H subunits were identified in all species studied. Furthermore, the interaction regions between RRN3 and POLR1F were found to be conserved and could be used to design drugs that inhibit rRNA transcription in the parasites studied. CONCLUSION: The inhibition of the rRNA transcription machinery in parasites might be a new therapeutic strategy against these microorganisms.


Assuntos
Criptosporidiose , Cryptosporidium , Giardia lamblia , Giardíase , Enteropatias Parasitárias , Humanos , Biologia Computacional , Criptosporidiose/parasitologia , Cryptosporidium/genética , RNA Polimerases Dirigidas por DNA , Fezes/parasitologia , Giardia lamblia/genética , Giardíase/parasitologia , Enteropatias Parasitárias/parasitologia , RNA Ribossômico
20.
Cell Mol Life Sci ; 79(6): 297, 2022 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-35585284

RESUMO

Aging is the result of the accumulation of a wide variety of molecular and cellular damage over time. This has been associated with a number of features termed hallmarks of aging, including genomic instability, loss of proteostasis, telomere attrition, dysregulated nutrient sensing, mitochondrial dysfunction, cellular senescence, stem cell exhaustion, and impaired intercellular communication. On the other hand, sirtuins are enzymes with an important role in aging and life extension, of which humans have seven paralogs (SIRT1 to SIRT7). SIRT7 is the least studied sirtuin to date, but it has been reported to serve important functions, such as promoting ribosomal RNA expression, aiding in DNA damage repair, and regulating chromatin compaction. Several studies have established a close relationship between SIRT7 and age-related processes, but knowledge in this area is still scarce. Therefore, the purpose of this review was to analyze how SIRT7 is associated with each of the hallmarks of aging, as well as with some of age-associated diseases, such as cardiovascular diseases, obesity, osteoporosis, and cancer.


Assuntos
Envelhecimento , Sirtuínas , Envelhecimento/fisiologia , Animais , Senescência Celular , Reparo do DNA , Instabilidade Genômica , Humanos , Sirtuínas/genética , Sirtuínas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...